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Introduction and Summary.

1. Except in a few very simple cases, the equations which govern the motion of a
viscous fluid have so far defied analysis. Their difficulty comes mainly from the fact
that they are not linear, so that the principle of superposition cannot be employed,
as in many branches of mathematical physics, to construct solutions by the method
of series or of singularities. For the same reason the flow pattern in the neighbourhood
of a moving body must alter when the speed of the body is changed, and it follows that
any exact determination of the pattern will be restricted to some definite speed.

As a matter of fact, no precise determination of this kind exists, except in cases where
the motion is indefinitely slow. But the form of the equations gives no reason for
doubting the possibility of “ steady ” motion (in which the velocities are functions only
of position) in every case of flow past fixed and rigid boundaries. Now in experiment
it is found (unless the velocities are very small) that eddying or periodic motions
always occur. Thus the conclusion seems inevitable that a steady motion may
become unstable as the rate of flow is increased, in the sense that accidental
disturbances, if of suitable type, will persist. ‘

2. The occurrence of eddies (or of * turbulent ” motion) is intimately related with
the important problem of the resistance of fluids, and it is therefore not surprising that
the question of hydrodynamic stability has attracted much attention. Fairly obvious
lines of investigation are suggested by the cognate theory of elastic stability. Starting
from a known solution for steady motion, we imagine a disturbance to have been effected
by some cause which it is not necessary to specify, and we examine, in the light of the
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general equations, the history of the disturbance after it has become * free.” The
steady motion is judged to be stable if we can show that every disturbance, whatever.
its type, tends ultimately to vanish, and neutral or unstable if any type is found to
persist or to increase. Since the general equations of motion are not linear, the question
of stability may depend upon the scale of the disturbance ; but if the disturbance is
assumed to be infinitesimal (as is customary in elastic problems), we may omit infinitesi-
mals of the second order from the equations which govern the disturbed motion, and then
the history of the disturbance (within the assumption stated) is independent of its
magnitude.

3. A knowledge of the initial (steady) motion is of course presumed, and this require-
ment limits the scope of our examination to those few and simple cases in which the
equations of steady motion have been solved exactly. The following list is believed
to cover ‘all solutions which are known* :—

(A) The laminar flow of a fluid, under uniform pressure gradient or body forces,
between two fixed parallel planes (LamB, ‘ Hydrodynamics,” § 330).

(B) The laminar flow of a fluid between two plane and paraﬂel boundaries which
have a uniform velocity relative to one another in a direction parallel to their
planes (ibid., § 330, a).

(C) The rectilinear flow of a fluid, under uniform pressure or body forces, through
a straight pipe of uniform section (¢bid., §§ 331, 332).

(D) Two-dimensional rotatory motion of a fluid about a fixed axis, between two
concentric cylinders of infinite length (¢bid., § 333).

The question of stability in case (D) has been examined by G- I. TavLor,T who deter-
mined not only the conditions under which the two-dimensional motion will become
unstable but also the nature of the motion which then sets in, and has completely
substantiated his conclusions by experiment. Before the publication of these results
the other three problems had attracted more attention,—presumably on account of
their greater analytical simplicity, because a satisfactory verification of theory by
experiment Would here, in the nature of the case, present serious difficulties. Inregard
to the simplest motion (B) there appears to be general agreement with the conclusion
of KeLviN,} that the Jaminar flow is in all cases stable for infinitely small disturbances,

* It will be appreciated that approximate solutions, or solutions limited to very slow motions, are useless
for an examination of stability.

1 ¢ Phil. Trans.,” A, vol. 223 (1923), pp. 289-343.

1 ¢ Phil. Mag.,” vol. 24 (1887), pp. 188-196 and 272-278 ; ‘ Collected Papers,” vol. IV, No. 34 (1887),
p- 321. KELVIN quotes, in support of his conclusion, the following descriptions of observed results by
OsBorNE REyNoLDs (‘ Phil. Trans.,” vol. 174 (1883), pp. 955-6).

“ The fact that the steady motion breaks down suddenly shows that the fluid is in a state of instability

for disturbances of the magnitude which cause it to break down, But the fact that in some conditions
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but that for disturbances exceeding a certain limit of size the motion becomes unstables
these limits of stability being narrower the smaller the viscosity. On the other hand,
this conclusion has not been held to be satisfactorily established, even in regard to two-
dimensional disturbances ; RavLEIGH has described the problem as “ of no ordipary
difficulty,”* and LamB remarks (1924) that ‘ Most writers who have attacked the
subject are disposed to regard the conclusion as probable, though as yet hardly
demonstrated.”{

4. This paper describes work which has been done in an attempt to examine the
stability of the motion (B). It should be explained at the outset that we have con-
centrated attention on this particular problem solely because our interest is centred for
the present in methods rather than in results. Our aim has been to develop a general
theory, of the kind which RavLEicH employed so successfully in relation to problems
of vibration, whereby the critical velocity of steady flow might be estimated approximately
in cases where exact solutions are not obtainable ; and in order to test the practical accuracy
of such a theory when found, it will evidently be necessary to compare its results with
those of more exact analysis. Now although the motion (B) is not of any particular
interest in itself, it offers what would appear, a priori, to be the simplest case for
theoretical investigation, because the formal solution is expressible in terms of known
functions. Thus it is for the moment the obvious test case.f

We have not yet succeeded in our attempt to answer the question, whether the
steady motion is in fact stable or unstable. This paper is presented (1) as a critical
review of previous work, indicating reasons why we regard the question as still
awaiting a really satisfactory answer, and (2) as an interim report giving certain
preliminary results which seem to have an interest of their own.

5. The scheme of the paper is as follows : Attention is confined to disturbances which
are two-dimensional, so that the quantities involved do not vary with z, when the
direction Oz is parallel to the plane boundaries and perpendicular to the direction of
their relative motion. In most parts of the paper, but not everywhere, the dlsturbance
is further restricted to be infinitesimal. ’

We begin by considering previous work on the problem. Section I deals with KeLvIin's
original investigations, and the criticisms to which they have been subjected by

it will break down for a large disturbance, while it is stable for a smaller disturbance, shows that
there is a certain residual stability so long as the disturbances do not exceed a given amount.” k

“ And it was a matter of surprise to me to see the sudden force with which the eddies sprang into existence,
showing a highly unstable condition to have existed at the time the steady motion broke down.”

“ This at once suggested the idea that the condition might be one of instability for disturbance of a
certain magnitude and stable for smaller disturbances.”

It should be remarked that REYNOLDS experiments were made with pipes of circular section.

* ¢ Collected Papers,” vol. 6, p. 275 (1914).
1 ¢ Hydrodynamies,” 5th ed., § 368.
1 Most of prevmus work on hydrodynamlc stability has been concerned with this problem.

28 2
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208 R. V. SOUTHWELL AND L. CHITTY ON THE PROBLEM OF HYDRODYNAMIC

Ravyreier and by Orr; with a somewhat similar investigation by OsEEN ; and with
the well-known method of OsBorRNE REYNOLDS. It is concluded that these researches
have not afforded a complete answer to the question of stability, and that the same is
true of REYNOLDS’ method as modified by ORR.

Section II examines the possibility of inferring stability from an integral equation
differing in form from that which is used in REYNOLDS’ method. At one time we
thought that our problem could be solved on these lines, but reasons are now given why
this belief must be discarded. The only conclusion which emerges from the discussion
is that the stability problem for a viscous fluid cannot be simplified by partial neglect
of the viscosity, after the manner of some of RAYLEIGH’S earlier investigations.

6. Section ITI describes the “ Method of Normal Co-ordinates,” which entails a study
of disturbances varying according to a simple exponential factor of the time. It is
shown that, on assumptions which are usually regarded as permissible from the physical
standpoint, the method may be used to obtain a complete solution (for infinitesimal
disturbances) in the special case of the problem where the plane boundaries are at
rest. The method is then applied to the general case (with moving boundaries). It is
found that certain properties (the so-called * conjugate relations *’) which are ordinarily
possessed by ‘“ normal ” solutions are here no longer satisfied, with the result that
we can no longer show that the time factors are always negative, or even that they are
necessarily real. Again, it is found that the method of expansion employed in the
special case, to express an arbitrary disturbance as a series of disturbances of “ normal ”’
type, also ceases to apply. This last result suggests the question, whether stability
would in fact be demonstrated if we could prove that all ““ normal ” disturbances (s.e.,
solutions characterised by simple exponential time factors) inevitably decay. We
state our reasons for believing that the proof would be sufficient as regards stability
for wnfinitestmal disturbances. This appears to be the view of most workers on the
subject.

7.. The only paper we have found which investigates in detail the dependence of the
time factor upon “ REYNoLDS’ number ” is that of L. Hopr (‘ Ann. der. Phys.,” 1914).
Horr’s investigation indicates stability for infinitesimal disturbances ; but it is subject
to some quantitative uncertainty, estimated by him as never greater than 10 per cent.,
arising from the fact that he replaces Bessel functions by their semi-convergent series
and retains only the first terms of these. We believe that it reveals with sufficient
accuracy all the main features of the problem, and that HopF’s conclusion in regard to the
stability is correct. ~But the failure of the conjugate relations between normal disturb-
ances (§6) makes it necessary to regard the use of approximations with considerable
distrust. RAYLEIGH, commenting on the work of Hopr and von MisEs, remarked :
“ Doubtless the reasoning employed was sufficient for the writers themselves, but the
statements of it put forward hardly carry conviction to the mere reader.””*

* ¢ Collected Papers,’ vol. 6, p. 275 (1914).
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8. It thus appeared that a more exact investigation of the ““ normal ”* disturbances
was called for. A grant made to one of us by the kindness of the Director of Scientific
Research, Air Ministry, enabled us to collaborate in this work, which forms the matter
of Section IV. The equation governing normal disturbances can be solved in series
when the index of the exponential time factor is assumed; and if the index has
been given a possible value, solutions obtained in this way can be combined so as to
satisfy the boundary conditions. Hence, by a process of trial and error, values of the

- time factor can be determined. The method is extremely laborious, and it becomes
impracticable when “ REYNOLDS’ number” exceeds a fairly small value ; but within
its limitations it yields results which are reasonably definite and certainly interesting.

60— \1/2

—

w0} T—FI=—
~d

h—/’\/‘\—_
’ AMTATTTTITRRTRRR
40 7,

Orr’s Criterion.

B R Ty SN PR

Qp’=qd%av
S 3
\{\ Wwﬂ
o VAL
N
© NI
. ]
(@)
N/

) : 2;:0
]
]
o ' !
L = — 750 200 250
48 9»2 = Reynolda' Numbef’(Vd/y).
F1a. 1.

The general nature of these results is exhibited by fig. 1. In that diagram the slowest
rate at which a normal disturbance can decay is related with the “ REYNOLDS’ number ”
of the steady motion by a series of curves. As REvNoLDS’ number we have taken the
quantity Vd/v, where V is the relative velocity of the two plane boundaries, d their:
distance apart, and v the kinematic viscosity of the fluid. Ordinates in the diagram
represent the non-dimensional quantity ¢ d?/4v, where e-# is the time factor of the
normal disturbance ; thus a positive value of ¢ implies that the corresponding
normal disturbance tends ultimately to vanish. The disturbance is assumed to be
simple harmonic as regards its variation with distance measured parallel to the plane
boundaries ; representing the wave-length in this direction by I, we have dencted by
v the non-dimensional quantity =d/l, which may evidently have any value. The


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A

a
)\
LU

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) ¢

A \
V. \

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

210 R. V. SOUTHWELL AND L. CHITTY ON THE PROBLEM OF HYDRODYNAMIC

rate of decay depends upon vy, and curves have accordingly been drawn, in fig. 1,
for the cases vy =0, 1, 2, 3. The small sketch in the left-hand top corner of the
diagram will serve to explain the foregoing symbols.

9. The curves in fig. 1 are entirely confined to positive values of ¢, indicating
subsidence of all normal disturbances within the range of the investigation ; but this
result throws little new light on the question of stability, since it was known already
that all normal disturbances must decay when REYNOLDS’ number has a value less
than 177 (“ ORR’s criterion,” indicated in the diagram by a dotted line). The most
important feature of the diagram is the looped form of the curves, which has no
counterpart in ordinary problems of vibration theory, and to which attention
does not seem to have been drawn before. On its discovery, it at once became a
matter of interest to investigate the way in which the type of the disturbance changes
as we pass round any given loop ; this matter is fully discussed in Section IV.

10. The closure of the loops indicates that for larger values of REYNOLDS’ number
the time factors will assume complex values : whether their real parts will be positive
or negative is a question which we do not attempt to investigate in this paper. Physically,
a complex time factor means that the normal disturbance (regarded as superposed upon
the steady laminar motion) is no longer stationary in position,* but travels with some
finite velocity along the channel; it can be shown that this velocity will be intermediate
between the velocities of the plane boundaries,—that is, it will be equal to the velocity
of the steady stream at some point within the fluid field.t On the mathematical side
it means that there is a new variable to be introduced in deriving solutions by a process
of trial and error; and the method employed in this paper, which has become very
laborious within the range of our investigation, accordingly becomes definitely
impracticable as a line of further advance.

11. In a subsequent paper we shall describe methods by which this deadlock has been
partially overcome ; the present paper is to be regarded as merely preliminary, indi-
cating the complexity of the problem and disposing of certain methods which have
been proposed for its solution. Our main conclusions may be summarised as follows :—

(@) None of the methods which have been suggested as alternatives to the method
of normal co-ordinates seem to be applicable to the investigation of our problem.

(b) The method of normal co-ordinates appears to be satisfactory as regards the
investigation of stability for infinitesimal disturbances, in the sense that a
sufficient proof of stability will have been provided if we can show that all
disturbances of normal type have a decreasing time factor. Our discussion
of this question makes no claim to mathematical rigour; but we see no reason
why the method should be less trustworthy as applied to our problem than in
others to which it has been applied without objection.

* i.e., when the plane boundaries move with equal and opposite velocities.
t This result is due to Orr. Cf. Section 1V, §4.
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(c) Within the range of REYNoLDS’ numbers which is covered by our investigation,
all normal disturbances have a decreasing time factor.

(d) The time factor varies with REYNOLDS’ number in a manner which is extremely
complicated. The looped diagrams have no counterpart in ordinary problems
of vibration theory. :

A A

It remains to acknowledge our indebtedness to the Director of Scientific Research,
Air Ministry, for the grant to which reference has been made in §8, and to Professors
H. Lamb and G. I. Taylor for their interest in the work, and for valuable criticism
and advice.
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SectroN I.—Review of earlier Investigations. Methods of KELVIN, OSEEN and
OsBORNE REYNoOLDS.

Formulation of the Problem.

1. This paper is concerned with the stability (or instability) of the steady motion
which has been described in the introductory section as ‘ Motion (B)”. A viscous
incompressible fluid occupies the space between two plane and parallel boundaries of
infinite extent. These boundaries move with uniform velocities in a direction parallel
to their planes, and each impresses its own velocity upon the fluid with which it is in
contact ; the relative velocity of the two boundaries is V. When V is small, the fluid
has a velocity which is everywhere parallel to V ; the motion is “ steady,”—that is to
say, it does not vary with the time. Our problem is to decide whether, when V has
a large value, this steady regime is liable to give place to ““ turbulent ” motion, in which -
the velocity of the fluid at any point fluctuates in direction between one instant and
another. Dimensional theory indicates that turbulent motion, if it is ever liable to occur,
will do so when the non-dimensional quantity Vd/v, termed “ REyNoLDS’ number
for the steady motion considered, attains a certain value. d denotes the distance

_between the plane boundaries, and v the “kinematic viscosity ” of the fluid; V, d
and v may be measured in any self-consistent system of units.

2. We shall now state the problem in mathematical form. Let Oz, Oy, Oz be a system
of perpendicular axes, Oy being perpendicular to the plane boundaries and Oz along
the direction of their relative motion. In the absence of body forces, the motion of
the fluid will be governed by

au ou u___19dp )
St + ay+ == Pax_{-v\m ....... (1)
and two similar equations, together with
“l"‘!"' ,...-.......-‘-.(2)'

the “ equation of continuity,” which expresses the condition that the fluid is incom-
pressible. In (1) and (2), w, v, w are the component velocities in the directions z, y, 2
respectively, p is the “ mean pressure ” of the fluid, and ¢ and v are the density and
kinematic viscosity. ‘At the boundaries we must have 4

u="U, v =0, w=0, . . . . . ... (3)

where U is the velocity of the boundary in question.
It is clear that all the conditions will be satlsﬁed if we take (3) to hold at every

point in the fluid, and write
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where o and P are constants adjusted to give the correct boundary values for U. That
is to say, a ““ steady ” solution, represented by (3) and (4), exists for all values of the
relative velocity V.  We notice that V = pd, so that REyNoLps’ number (§1) can
be expressed in the form

R=08a/y. . v ()

Now let us imagine that the steady regime is disturbed. Then we have initially
(t = 0) velocities u,, vy, w, which must satisfy (2) at every point and (3) at the boun-
daries, but which will not satisfy (3) at other points in the fluid. Writing

u=U-+u, v="1 w=w, ... .. .... (6

where U is given by (4), we may say that «', v, w' define the * disturbance.” Their
initial values u,’, v,’, w,” are given; at all times they satisfy an equation of the form
(2) and the boundary conditions

w=v=w=0; ... .. .......(7

after the disturbance has become ‘ free ’* they are governed by equations which may
be obtained by substitution from (6) in the three equations of type (1).
~ The question of stability turns on the behaviour of the disturbances as controlled by
these conditions. If any solution for ', v’, w’ can be found which does not tend to
zero as t > o , the steady motion is said to be unstable, in the sense that a disturbance
of this type will persist : if we can show that «', v’, v’ inevitably come to zero, we may
judge the steady motion to be stable.

3. In this paper we shall confine attention to disturbances which are two-
dimensional, so that all quantities in (1) are independent of z, and w = 0. The last
of the equations (1) is then satisfied identically, and the other two become

ou’ o’ 0 __lop |
T U+ Sy S )=~ v .
8
ov’ a 1 ap ’
@ = —-P L g2y,
S ERCRIE AN
V2 now denoting the operator ;—- + ?a The equation of continuity (2) takes the
form
ou | ov
—t=—=—=0, ... 0.0 e e e 9

* We are not concerned with the mechanism by which the disturbance is set up, except to postulate that
after the instant (¢ = 0) it ceases to be operative. Whilst it is acting (¢ < 0), the disturbance may be said
to be ““ forced ”; afterwards (¢ > 0) it is said to be * free.”

VOL. COXXIX,—A. 27F
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214 R. V. SOUTHWELL AND L. CHITTY ON THE PROBLEM OF HYDRODYNAMIC
and so permits the introduction of a ** stream function ” ¢, defined by

’ 84) ’ 0t
u = — ¥ =T .. ... ... ... (0
" ay’ v or ( )

The relations (7) reduce to two, which may be written in the form

-~

oy _ oY _ 11
_ay_o,..............()

|

D
8

at the plane boundaries.

Eliminating p from (8) by cross-differentiation with the aid of (9), we obtain the

equation

FoVEH U Ry Eao L

where
= Oy by (10) . e ... (13)
or oy
When the disturbance is infinitesimal, so that quantities of the second order in ¢

may be neglected, equation (12) reduces to

%—N%+U%:& L (8

4. In aun earlier paper dealing with our present problem,* attention was called to the
necessity of imposing further conditions supplementary to (11).  In seeking to deter-
mine the conditions (if any exist) under which an accidental disturbance of the steady
motion will tend to persist or to increase, we must ensure that such persistence is not
in reality an effect of suitably varying pressure differences, implied in our solution, at
the ends of the fluid field. This will be done if we . . . . . take the length of the fluid
field to be infinite and the disturbance to be simply harmonic in # : our problem then
becomes a limiting case of the problem of shearing motion between two concentric
cylinders, in which the radii of the cylinders are infinite.”’}

That paper was concerned only with infinitesimal disturbances. In the general case
of our problem we have to consider finite disturbances which (on account of the non-
linear form of the governing equations) cannot be analysed into independent
disturbances of different wave-lengths. So we can no longer assume that the
disturbance is simple harmonic in #; but on the other hand we must impose some
condition of an equivalent nature.

We may regard the plane boundaries of our problem as the limiting forms of two
concentric circular tubes, each of which is bent in a circle and joined on itself so as to

* < Phil. Mag.,” vol. 48, p. 540 (1924).
T Loc. cit., p. 544,
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form a hollow tore or anchor ring. Fig. 2 illustrates the system here contemplated.
The two concentric tubes are shown in section, and the annular space between them
(shown shaded) is imagined to be filled by the fluid, which in the steady motion has a
velocity purely normal to the section,—.e., along the tubes, in the direction denoted by
z. Indefinite extension of the fluid field in the direction of z can be reproduced by
making infinite the mean radius of the tubes (r in fig. 2) ; and indefinite extension in

Fic. 2.

the direction of z can be reproduced, similarly, by making infinite the mean radius
of the tores (R in fig. 2).

It is now unnecessary to make any assumption in regard to the nature of the dis-
turbance, provided that we postulate that in any integration extending throughout
the whole of the fluid field we may write

j“’ 9% gy = 0, ji B oo, . (15)

—w 0%

where ¢ is any function of the fluid velocities, or pressures, which is necessarily single-
valued in the multiply-connected fluid field of the system shown in fig. 2. When (as
in the present paper) attention is confined to two-dimensional disturbances, the second
of these conditions is satisfied already.

This device for giving precision to the boundary conditions of our problem was (in
effect) employed by RAYLEIGH in a similar connection.*

The Steady Motion is Stable for Laminar Disturbances.

5. We may remark at this point that when the disturbance is laminar (v' = w’ = 0)
stability can be inferred at once. For the second and third of the equations of motion
(1) will now require p to be independent both of y and of 2z, and (2) shows that w’

* ¢ Collected Papers,” vol. 3, pp. 578-581 (1892).
2F 2
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is then independent of z. It follows from the first of equations (1) that op/ox must
be independent of z, and then the first of the conditions (15) which have just been
imposed shows that op/ox is everywhere zero. Accordingly we have from (1) the

relation
ou’ 2w . 0%
= :v<a———y2 +——az2>. N € 1)

Again, «' must vanish at either boundary. Hence, multiplying (16) by «' and
integrating throughout the fluid field, we obtain the equation

i e aie = = [[{(5 )+ (5 v

in virtue of the second of the conditions (15). This result shows that »’ comes
ultimately to zero at every point in the field.

History of the Problem.

6. The earliest discussion of hydrodynamic stability appears to be that given by
HermuOLTZ, who showed that, in an inviscid liquid, a surface at which the velocity
is discontinuous will be essentially unstable.* In 1879, RayLEiGH applied a method
due to KELVIN to investigate more precisely the character of the instability.t It soon
appeared that the calculations failed in one important respect to correspond with the
facts, and the explanation was suspected to lie in the assumption of discontinuous
changes of velocity, which in a real fluid, by reason of viscosity, must instantly
disappear.] Accordingly, in succeeding papers,§ RavLEIGH modified his assumptions
in regard to the steady motion, and dealt with laminar systems in which, although the
vorticity varied abruptly, the velocities were taken to be continuous. His most general
conclusion relates to infinitesimal disturbances in two dimensions : ““ The steady motion
of a non-viscous liquid in two dimensions between fixed parallel plane walls is stable
provided that the velocity U, everywhere parallel to the walls and a function of y only,
is such that d*U/dy? is of one sign throughout, y being the co-ordinate measured

perpendicularly to the walls.”||

% ¢ Phil. Mag.,” vol. 36, p. 337 (1868). The possible existence of unstable solutions of the equations of
motion seems to have been first suggested by Stoxes, ¢ Camb. Phil. Soc. Trans.,” vol. 8, p. 105 (1843).

1 ¢ Collected Papers,” vol. 1, No. 58 (1879).

1 RavieieH, ¢ Collected Papers,” vol. 1, No. 66, p. 475 (1880).

§ ¢ Collected Papers,” vol. 1, No. 66 (1880); vol.3, No. 144 (1887) and No. 194 (1892); vol. 4, No. 216
(1895). The whole investigation, and criticisms advanced by KerLvix and LoV, have been fully reviewed
by ORR, ‘ Proc. R. Irish Acad.,” vol. 27, pp. 9-138 (1907).

|| ¢ Collected Papers,” vol. 6, p. 266 (1914)
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According to this conclusion, the steady motion now under consideration would be
judged to be either stable or ““ neutrally stable,”—certainly not unstable. This result
seems not to have been expected by RavyLeicH,* and he advanced several suggestions
to explain the supposed discrepancy between theory and experiment. The most
important of these may be quoted: “ . . . the impression upon my mind is that
the motions calculated . . . for an absolutely inviscid liquid may be found in-
applicable to a viscous liquid of vanishing viscosity, and that a more complete treatment
might even yet indicate instability, perhaps of a local character, in the immediate
neighbourhood of the walls, when the viscosity is very small.”t

In 1883, OsBorRNE REYNOLDS published a remarkable account of experimental
observations relating to the appearance of turbulence in fluid flowing down a long
straight pipe.} His results attracted great interest, notably on the part of RavLEiGH
and KELVIN. At RAYLEIGH'S suggestion “ the Criterion of the Stability and Instability
of the Motion of a Viscous Fluid ” was proposed as the subject for an Adams prize essay ;
shortly afterwards the subject was taken up by KrLvIN, whose investigations will now
be described. KELVIN’S conclusion was that the steady motion is wholly stable for
infinitesimal disturbances, whatever may be the value of the viscosity ; but that when
the disturbances are finite the limits of stability become narrower and narrower as the
viscosity diminishes. ’

KEeLvIN’S Investigations.

7. KeLvin employed two methods : the first§ a special method applicable only to
the problem of this paper, the second|| more general and also applicable to other problems.

In a paper published in 1892, RayreicuY indicated objections to KELVIN’S second
(general) method : If T rightly understand it, the process consists in an
investigation of forced vibrations of arbitrary (real) frequency, and the conclusion depends
upon a tacit assumption that if these forced vibrations can be expressed in a periodic
form, the steady motion from which they are deviations cannot be unstable. A very
simple case suffices to prove that such a principle cannot be admitted.” RAVLEIGH’S
objection has been supported by ORR, and seems to have been accepted by KrLvin®* ;
accordingly it need not be further considered here.

Kewvin’s first (special) method appears to have been accepted by RavLEIGH

* ¢ Collected Papers,” vol. 3, p. 576 (1892).

+ Ibid., p. 582.

I ¢ Phil. Trans.,” vol. 174, p. 935 (1883). A quotation from this paper has been made in the Intro-
ductory Section, § 3.

§ ¢ Phil. Mag.,” vol. 24, pp. 188-196 (1887).

| < Phil. Mag.,” vol. 24, pp. 272-278 (1887).

9 ¢ Collected Papers,” vol. 3, p. 582 (1892).

** RavrEieH, ¢ Collected Papers,” vol. 6, p. 267 (1914).
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918 R. V. SOUTHWELL AND L. CHITTY ON THE PROBLEM OF HYDRODYNAMIC

originally* ; but later criticisms, advanced by OrR, showed that it too must be rejected
as a decisive proof of stability. In this method the disturbance is restricted to be
infinitesimal, but it need not be two-dimensional. We shall, however, explain it here
in relation to disturbances of two-dimensional type, which are governed by equation
(14) ; accordingly we shall not follow KELVIN’S treatment in detail.

If in equation (14) we were to make v zero, then since U is a function of y only the
resulting equation could be solved in the form

C=F{@=— 1),y

where the form of T is defined by the initial conditions (for ¢ = 0). In the absence of

viscosity (v = 0) the fluid can “ slip ”” at the boundary ; hence there is only one boundary

condition to be satisfied, and from ¢, as given here, a solution for ¢ can be derived.
On the basis of this solution KeLVIN assumed for trial in equation (14) the expression

¢ = Tei{Ay+k(x~Ut)} (17)

2

where T is a function of ¢ only. On substitution in (14) it is found that T must
satisfy the equation

v+ (0 —hep T =0,

in which 8 has been written for dU/dy. Hence
—log T = v {(k* + 22) ¢t — knpt? 4 3k2p%® - const.},

and the type solution (17) takes the form

V2 =¢ = Ae-yt(k«-;-v—kmtﬂk%,sﬁts) i {ay+k (2~ UB)} (18)

PRI

which becomes, when ¢ = 0,
¢ = A gt

From (18) we derive, as the corresponding expression for ¢,

A BRI L) i P+E (2=}
b= — ; - e e (19)
% (n — kpi)

This gives, when ¢ = 0,
J— A @ (kx4 Ay) 20
p = kz_{_xze P ¢211))
KeLvIN argued that any arbitrary initial disturbance can be analysed as a series of
particular solutions of the type (20), values of A being chosen which permit the satis-
faction of the boundary conditions (now two in number, since v does not vanish)
when ¢ = 0. The subsequent motion, for an unlimited field, would be given by a

* ¢ Collected Papers,” vol. 4, p. 209 (1895).
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corresponding series of the functions (19) ; but since the latter functions do not, as ¢
increases, continue to satisfy the boundary conditions, it is necessary to add a supple-
mentary solution of (14), such: that the combined solution satisfies the boundary
conditions throughout all time. This supplementary solution (termed by him a
““ forced ” disturbance) KeLvIN proposed to construct * after the manner of Fourier ”
from a series of solutions which are simple exponential functions of the time. He
assumed, for his type solution of this last class, that

LI) o ei (ka:+wt)’

which makes ¢ a function of the same form. Its governing equation is derived from
(14) by substituting ¢k for 9/0x and 1w for 9/ot.

KELVIN made no attempt to carry out in detail the analysis which would enable
him, according to this method, to investigate the history of any representative initial
disturbance. He argued that the supplementary solution is required to neutralise at
the boundaries the values of ¢ and 9¢ /0y which are given by the primary solution (19) ;
and that, since the latter inevitably comes to zero when ¢ is very large (the time factor is
ultimately governed by the term e ¥*#%), the supplementary solution must also come
to zero. Hence he concluded that the steady motion is stable.

8. Commenting on this argument, ORR remarks*: “ . . . it must, I think, be
held that neither does it afford a proof of the stability of the motion.” ORR argues
that the supplementary solution is completely determined by the necessity of neutralising
at the boundaries the values of ¢ and 0y /oy as given by (19); and that KeLvix has
assumed without justification that it consequently starts from zero at t = 0. If the
supplementary solution is in fact to start from zero, solutions of the type (19) must not
only satisfy both boundary conditions initially, but also be capable of representing any
arbitrary initial disturbance.

Later Orr objects to KELVIN’S assumption, that the supplementary solution will
come asymptotically to zero as ¢ increases to infinity because this is true of the primary
solution (19). He says{ that this can be asserted only of the boundary values of the
supplementary solution ; and he concludes that “ Lord KELVIN has not proved stability,
even for infinitesimal disturbances.”} He gives examples to show that KeLvin’s
assumptions will be justified only if it is known that the fundamental free disturbances
are stable,—and this, of course, is the question at issue.

It would seem that a slight modification of KELVIN’S analysis enables us to meet
Orr’s first objection, that KELVIN’S supplementary solution has not been proved to
start from zero (everywhere) at ¢t = 0. It appears (Section III) that any arbitrary
disturbance (of infinitesimal magnitude) can be expressed in a series of component
disturbances, each of which satisfies an equation of the type

[g+ v V2d =0, . . ... ....... (21)
* ¢ Proc. R. Irish Acad.,” vol. 27, p. 85 (1907). + 1bid., p. 88. 1 Ibid., p. T1.
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together with the boundary conditions (11). Now by a slight extension of KELVIN’S
analysis it is possible to derive as a solution of (14) the expression

C = A et N [t oog (f (1 — Ut) + Ay} 4 e~ cos {k (z — Ut) — ay}],  (22)

where A is an arbitrary constant. Initially (¢ = 0) this reduces to the form
Co = 2A cos kx cos Ay,

and therefore satisfies (21) when A is given an appropriate value. Similar expressions
can be found which for (£ = 0) reduce to the forms

o o= sin kx cos Ay,
Co o sin kx sin Ay

and Co oo cos kx sin Ay ;

and it follows that any arbitrary disturbance can be expressed in a series of terms of
the type (22), which series imitially satisfies both boundary conditions of our problem.

But the necessity for a supplementary (““ forced ) solution remains, because it is not
possible to derive from (22) an expression for ¢ which continues to satisfy both boundary
conditions when ¢ becomes finite. Hence, if one or more of the free disturbances
(satisfying both boundary conditions) should be characterised by an exponentially
increasing time factor,—and this is the question at issue,—it appears that the forced
disturbance, although it eventually comes to zero at the boundaries, may increase
indefinitely in other parts of the field.

OseeN’s Investigation.
g

9. It thus appears that KELVIN'S researches must be regarded as having failed
to demonstrate stability even for infinitesimal disturbances, although they make this
conclusion probable. Since the difficulty, according to the argument just given, arises
solely from the fact that (22) is not compatible with the satisfaction of both boundary
conditions throughout all time, it evidently lies in the unknown action of the boundaries,
from which vorticity must be *“conducted” into the fluid (this is the physical explanation
of the necessity of a supplementary solution) in order that the boundary conditions may
be satisfied. KELVIN’S investigation fails because it omits to study the details of this
boundary conduction.

The same objection applies to an investigation by OSEEN, in which a solution of (14)
is obtained in the form* ' - -

_[fe=wtiptatnl <n¥y)*]
Ce Tt (1+ 5,60 rr

anvi (1 + A R%2)!

. * OsEEN, ¢ Arkiv Math. Ast. Fys. Upsala,’ vol. 7, No. 15-(1911). It is easily verified that the foregoing
expression satisfies (14) when U = @y, and that it reduces for (¢ = 0) to a vortex concentrated at one

point (&, n).

(@, g, t) =

b
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where

_— H im0y GE dm.

OsEEN makes no attempt to satisfy the conditions at the plane boundaries, stating
that he has considered “the specially unfavourable case” in which the distance between
the boundaries is infinitely great. But this surely means that he has neglected the only
agency which can be conceived to produce instability,—by neutralising the dissipation
which is inevitably caused by viscosity. RAYLEIGH, commenting on OSEEN’S solution,
makes practically the same criticism® : ““ I cannot see myself that Osgex has proved
his point. It is doubtless true that a great distance between the planes is unfavourable
to stability, but to arrive at a sure conclusion there must be no limitation upon the
character of the infinitesimal disturbance, whereas (as it appears to me) OSEEN assumes
that the disturbance does not sensibly reach the walls. The simultaneous evanescence
at the walls of both velocity-components of an otherwise sensible disturbance would
seem to be of the essence of the question.”

Method, of OSBORNE REYNOLDS.

10. An entirely new line of attack was adopted by OsBorNE REYNOLDS in a paper
published in 1895.7 We shall illustrate his method in reference to disturbances of two-
dimensional type, for which the governing equation is

GC

VW 4 (U -+ o) w—Jr—v’%——- . (12) bis

There is no necessity, in this method, to restrict the disturbance to be infinitesimal.

In (12) we substitute ——-g-yq—' for o/, %—;’g for v’, and V2¢ for . If then we multiply the

equation by ¢ and integrate throughout the fluid field, terms which are of the second
order make no resultant contribution, and we obtain

8tH{(gi> +<2‘3>2}dwdy= ﬁﬂgi g¢ dw dy — VH(V%F dody. . . . (23)

This equation enables us to calculate, when the distribution of ¢ at any instant is
known, the rate at which the integral

) 54 }
“{(30&) / > o dy
Is increasing at that instant. This integral may also be written as % H (u'® 4 v"?) dx dy,
* ¢ Collected Papers,” vol. 6, p. 272 (1914).

T ¢ Phil. Trans.,” A, vol. 186, p. 123 (1895).
VOL. COXXIX.—A. 26
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where 4’ and v" define the disturbance according to (6) ; and for this reason it has been
somewhat loosely termed the ° kinetic energy integral of the disturbance.” If it
ultimately comes to zero, ' and v" must evidently come to zero at every point in the field,
—that is to say, the steady motion is stable for the type of disturbance considered :
if it can increase continually, we shall be justified in asserting that the steady motion is
unstable.

ReyNoLDs does not seem to have applied his method to the problem which we are
discussing here ; but for other types of steady motion,* by taking arbitrarily chosen
types of disturbance which satisfy the boundary conditions, he was able to deduce a
limiting velocity which must be exceeded if the kinetic energy integral is not to decrease.
The criterion is expressed as a limiting value of a non-dimensional quantity akin to
the quantity Vd/v which we have taken as the ¢ REYNoLDS’ number ” of our problem.f
Numbers of this kind are known from experiment to be criteria of critical velocity in
all cases where instability has been found to occur; and REYNOLDS seems to have
concluded from this fact that his calculations had some bearing on the basic question
of stability.

The application of REYNOLDS’ method to our problem was made by H. A. LOoRENTZ,]
who obtained the limiting figure 288 for Vd/v, taking as his assumed disturbance
a species of “ elliptic whirls.”

11. But if the type is chosen arbitrarily (as in these investigations), the rate at which
the integral is found to increase will as a matter of fact afford no indication of stability
or instability. As remarked by G. I. TavyLor§: “ It does not determine an upper
limit to the speed of flow which must be stable, because some other type of disturbance
might exist which would increase initially at a lower speed of the fluid. Neither does it
determine a lower limit to the speeds at which the flow must be unstable, because the
assumed disturbance which initially increases might decrease indefinitely at some
later stage of the motion.”

Orr’s Extension of the Method.

12. A considerable improvement in method has been effected by Orr, who employed
the calculus of variations to find that type of disturbance in which, for the least value
of B, the kinetic energy integral can be momentarily stationary. In this way he
determined the highest value of REYNoLDS’ number for which all disturbances must
necessarily decrease. This value is given approximately by

R=17TT. & v vt e it eie (24)

* See Introduction, § 3.

T See Introduction, § 8.

1 ¢ Abhandlungen iiber theoretische Physik,” vol. 1, p. 43 (1907).
§ < Phil, Trans.,” A, vol. 223, p. 290 (1923).
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13. A paper published by one of us in 1924* extended ORR’s results by finding a lower
limit for the value of REYNOLDS’ number which permits the kinetic energy integral to
increase momentarily at any specified rate. That is to
say, assuming the relation 320

v
() + 22 oA
-l e | Y]

) / Orr's Point.
the paper investigated what is the smallest value of >'®
REYNoLDS’ number which can be assoomted with any 8o
given value of ¢.
Fig. 3 shows the relation which was obtained. ¢ has

. . . . . . o -
been rendered non-dimensional by associating it with ' °q e 80
other parameters of the system, so that abscisse in
fig. 3 represent not q but ¢d?/v. For ¢ = 0 the curve Fre. 3.

gives ORR’s result (24).
But results of this nature have little bearing on the question of stablhty, for reasons
indicated by TAYLOR in the sentence quoted above. As a means of examining the

question of stability it appears that the method of OsBorNE REYNOLDS must be
discarded.

SEcTiON IL.—Review of Available Methods : (1) The Use of an Integral
Equation.

The “ Vorticity Integral.”
1. To obtain equation (23) of the previous section, which introduced the * kinetic
energy integral,” we multiplied the governing equationt

ac vV2C+(U+u) 'azr_o ........ (1)

by ¢, and integrated throughout the fluid field, making use of the boundary
conditions

If we multiply (1) by ¢ instead of ¢, the term in U vanishes on integration (since U

* < Phil. Mag.,” vol. 48, p. 540 (1924).
1 Equation (12) of Section I.

2a2
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is independent of z), and the last two terms make no resultant contribution, in virtue
of the equation of continuity. We are left with the equation

(%H e de dy — zvﬂcvzc dedy. . ... ... (3)

v dxdyzfzg_f;ds—”{@-i)z+<%>2}dxdy, ..... (4)

by GREEN’S theorem, equation (3) would yield an immediate proof of stability ¢f the
boundary conditions had required either ¢ or 0% /on to vanish, as well as w', at every pont
on the boundaries. For under these conditions the line integral in (4) would vanish, and

then (3) would show that “ C dx dy, which we shall term the ° vorticity integral,”

2. Since

decreases without limit. This means that { (= V2¢) must ultimately come to zero at
all points in the field, and hence (since 8¢ /oy vanishes at every point on the boundaries)
¢ must ultimately have a constant or zero value throughout the field. That is to say,
every disturbance will ultimately disappear.

Attempt to Deduce Stability from KorTEWEG'S Theorem.

3. Although this argument is not admissible (because the boundary conditions do not
require either £ or 9¢/on to vanish), the fact that U does not appear in (3) seemed at one
time to indicate that a proof of stability could be based on this equation. When the
boundaries are fixed (so that U = 0), KoRTEWEG’s theorem* asserts that the vorticity
integral tends always to decrease, whatever the type of the disturbance, provided that
this is sufficiently small to justify neglect of the second-order terms in the equations of motion.
But equation (3), which kolds for disturbances of any magnitude, indicates that the increase
or decrease of the vorticity integral turns solely upon the type of the disturbance (which

determines the sign of _U ¢V2L dx dy), and does not depend either upon the scale of
the disturbance or upon the magnitude of U. Hence it appeared that the integral
j J ¢V2{ dx dy, since it is negative under conditions contemplated in KORTEWEG’S

theorem, must be negative for every disturbance which satisfies the boundary
conditions of our problem. If this conclusion were correct, equation (3) could
be used to show that the vorticity integral tends steadily to decrease for any two-
dimensional ““ free ”” disturbance, whether large or small, at a rate which is independent
of U. It would follow that ¢ must ultimately vanish at every point in the field, which
means (as before) that the disturbance must ultimately disappear.

* ¢ Phil. Mag.,’ vol. 16, p. 112 (1883). Cf. Lams, « Hydrodynamics,” §§ 329, 344 (2).
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Failure of the Astempt.
4. Attention was accordingly directed to the sign of the integral “ V2 du dy for

a disturbance governed by the boundary conditions (2). An alternative argument was
developed, based on the assumption that any disturbance can be expanded in a series
of normal functions of a certain class, which indicated that the integral is intrinsically
negative for all disturbances satisfying the boundary conditions of our problem.

It was recognized that the necessity of assuming the validity of the expansion laid
this demonstration open to some objection ; but it was thought that, combined with
the alternative argument from KorTEWEG’S theorem, it might be held to dispose fairly
satisfactorily of the question of stability. Subsequently, however, in an attempt to
develop a more convincing proof, it was found that certain types of disturbance, satisfy-

ing the boundary conditions (2), give a positive value to the integral HCV*C dz dy.
If we consider a disturbance of the type

¢=Yecoskr, . .. .. . .. ... ... (5)
where Y is a function of y only which satisfies the boundary conditions
Y=dY/dy=o0, . . ... .. ... ... (6)
then the sign of H CVE{ dx dy is the sign of

j (Y — R2Y) (Y — 2kY" + keY) dy,
— j Y'Y dy — ke j‘[Y (Y — 8k2Y") - 2Y"2 L Y2) dy. . . . (7)

(Dashes here denote differentiations with respect to y.) Now in virtue of the boundary
conditions (6) we have ‘

jYY""dy.: jY“zdg,
and
[yyray = — [ dy.

So the second integral in (7) is a necessarily positive quantiﬁy; and it follows that the

sign of ” (V¢ dzdy, for a disturbance of the type (5), will be negative if the first

integral jY" Y dy can be shown to be negative. Since, on the other hand, the
second integral in (7) vanishes with k, the first integral must predominate when k is

sufficiently small, and hence ” ¢V2 ¢ da dy may assume a positive value if ( YY" dy
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can be positive. Thus to prove that H (V¢ dedy is negative, it s both mecessary

and sufficient to prove that '( YY" dy is negative when Y is subject to the boundary
conditions (6).
But if we define Y by the differential equation

Y =g I (8)

a solution even in y can be obtained in the form

_ y2n+4 2 .
Y=mro@miy@mio@mrp e 0
where A and B are arbitrary constants. If the originis taken at the centre of the field,
so that the boundaries are defined by y = 4+ b, the conditions (6) require that A shall

have the value

. b2n+2

2 (2n-+ 3) (2n + 2) (2n -+ 1)’

and B a value which does not concern us here. Inserting this value for A in (9), we
deduce that

v (2% + 3) y2n+2 —_ ban+2
Y oE e Yo BRI (10)

and from (8) and (10) we have

dy,

190 NTII _ K (27), -+ 3) y4n+2 — b2n+2y2n
j YTy = !_b(zn F3)(2n +2) 2n + 1)

N 8n (n -+ 1) b3
@+ 3)(@2n +2) (20 + 17 (4n + 3)

Hence jY" Y dy is positive when n > 0.

Reason for the Failure. Alternative Proof of KoORTEWEG’S Theorem.

5. It thus became clear that fCV“’Z dx dy is not intrinsically negative for every

arbitrarily chosen distribution of ¢ which satisfies the boundary conditions (2); and
hence, that the reason why it is always negative according to KoRTEWEG’S theorem is
to be sought in some limitation, other than these boundary conditions, which is there
imposed on ¢. It must be recognised that a temporary increase in the vorticity integral
is not @ priort incompatible with ultimate evanescence of all disturbances (¢.e., with
stability). An alternative proof of KorTEWEG's theorem will now be given, which
indicates that we may expect such temporary increase to occur even when U =0
(so that the boundaries are fixed), unless the disturbance is of infinitesimal magnitude.


http://rsta.royalsocietypublishing.org/

A A

JA '\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1~

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STABILITY.—I. UNIFORM SHEARING MOTION IN A VISCOUS FLUID. 227

In the circumstances contemplated by KorTEWEG, U = 0 and (since the disturbance
is assumed to be infinitesimal) the second order terms in (1) may be neglected. So
the governing equation is

where { = V2{. The boundary conditions (2) may be replaced by

W _
q)_ay 07

for reasons which are given, in support of the same conclusion, in Section III, § 1.

Now by GREEN’S theorem, used in conjunction with these boundary conditions
which must be satisfied by ¢ at all times, we have the equation

|[#2dody = |69 % dway Ha‘*’ V2 du dy,
when ¢ is any continuous function. From this equation, and from (11), it follows that
5 H OV dudy = 0, . . . . . L (12)

when 8 is any plane harmonic function (so that V20 = 0), provided that ¢ relates to an
infinitesimal “ free ”” disturbance and that the boundaries are at rest.
On this understanding, (12) permits us to write

y ﬁ (VR dwdy = v ﬂ(c Ve — ) dady, . . . . . . (13)

and by GREEN’S theorem, if 6 be now made equal to % at every point on the boundaries,
we have

[J&—o0 v @—oyamdy = —m((%(c ~ 0 + <-a%(c — 6)>2}dwdy.

The right-hand side of this equation will clearly be negative unless ¢ = 0 every-
where, so that V¢ = 0.  But this result, in virtue of the boundary conditions, would
mean that the disturbance vanished everywhere : so we may conclude from (13) that

'” ¢V2{ dw dy is negative for all disturbances, under the conditions assumed in deriving

(11) from (1). Thus KorTEWEG’S theorem is established.

If on the other hand we dispensed with KorTEWEG’S assumptions, and worked from
the exact equation (1) in place of the simplified equation (11), we should obtain, in
place of (12), the equation

H 0 l:vV‘”‘C — (U+u')%-2 'az] dody =0, . . .... (14)


http://rsta.royalsocietypublishing.org/

A\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AL A

A \
1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

228 R. V. SOUTHWELL AND L. CHITTY ON THE PROBLEM OF HYDRODYNAMIC

when 0 is any plane harmonic function,—provided that the boundary conditions (2)
can be modified in the same manner as before.

In virtue of the boundary conditions, and of the equation of continuity

ou' | ov
Ty

we may throw this equation into the equivalent form*

0,

”["evzc + {(U +u ) + v ——H dody =0, . . ... (15)

and we have further
”CU% duo dy = ” A (Ug-g)dw dy,

by GREEN’S theorem, combined with (2),
_ dU 2%0
(since U and 6 are both plane harmonic),

_ 020
= 2@j g o aydxdy.
Substituting this expression in (15), we should have, in place of (13), the equation

vﬂcvzz;dmzyzv”(c_e)vz(c—e)dxdy
”[%q’axa ( —}—v—):ld:vdy ... (16

It is not apparently possible to deduce from this relation that the integral on the left
is in all cases negative, unless we make B zero and assume that the disturbance is of
infinitesimal magnitude. Moreover, it is only on this last assumption that it seems
possible to justify the modification of the boundary conditions which has led to (14).

Physical Explanation of the Failure. “* Boundary Conduction.”

6. The foregoing paragraph shows that there is operative, in addition to (2), a further
boundary condition which assumes a different form according as KORTEWEG’S restric-
tions are imposed or not. This additional condition is expressed by (14), which under
KorTEWEG’S assumptions reduces to (12). In elther form it has been based on the
consideration that not only ¢ and 0y /dy, but also ¢ and ¢ /0y, must vanish at the

* U is, of course, independent of .
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boundaries throughout all time ; for the latter requirement demands that ” 0% da dy

shall vanish when 6 is any plane harmonic function, and for “free” disturbances,
by substituting for ¢ from (1), we arrive at (14). - So long as the disturbance is *“ forced ”’
(so that body forces appear in the governing equation), the restriction is not operative ;
but it is imposed the moment the disturbance becomes ““ free,” and in general it demands
a conduction of vorticity (¢) inward from the boundary. Therefore at the boundary
?i, and hence* V%, considered as functions of time, may exhibit discontinuities.
7. A similar conclusion, in explanation of our paradox, is reached by LaMB in a
papert which deals with the simpler case of a laminar disturbance (v = 0) occurring
in a channel with fixed walls. LaAMB assumes an initial distribution of velocity (u) to
be produced by body forces of simple type ; and he represents this by a Fourier series,
each term of which satisfies the boundary condition (¢ = 0) and contains a time factor
which makes it a solution of the governing equation for * free ”” disturbances. Finally,
using this series to examine the history of the disturbance after the body forces have
ceased to act, he finds that 9%u/dy? and higher derivatives of » are discontinuous in
respect of time. | '
According to the argument now given, we must look to conduction of vorticity from
the boundaries into the fluid field as the only means whereby the disturbance can be
made to satisfy a third boundary condition, implicit in the governing equation for
free disturbances. This, we suggest, is the physical explanation of both LAMB’S
result and ours. ‘ :

Further Examination of the Integral Equation. (1) Ravieicr’s dnalogies.

8. The foregoing discussion, in its insistence on the importance of boundary con-
duction, supports the objections advanced by RavrLEicH and ORR against investigations
(by KeLviN and OsEEN) which in effect make the question of stability turn on the history
of a disturbance in fluid of infinite extent.] But it also calls for a critical examination
of equation (3), which appears to have been accepted both by Orr§ and by RAYLEIGH. ||
RavyiricH remarked that the governing equation for { will apply equally to the tempera-
ture, or salinity, of a fluid moving with velocity U; and he added : “ Any conclusions that
we may draw have thus a widened interest.” But, in our hydrodynamic problem, the
subsequent distribution of ¢ is controlled not only by the governing equation but also

by the condition <“ 0% dw dy = O>. This is a highly artificial condition when ¢ is
* In virtue of the governing equation.. ,
T ¢ Aeronautical Research Committee’ B. & M., No, 1084 (1926).
1 See Section T, §§ 8 and 9.
§ Loc. cit. supra, end of § 23.
| ¢ Collected Papers,” vol, 6, p. 270:(1914).
VOL. COXXIX.—A. 2H
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interpreted as temperature or salinity : the natural condition in such cases would
be either £ = 0 or 8%/dy = 0 at the boundaries throughout all time, and neither of
these conditions would introduce the difficulties which confront us here, as a conse-
quence of boundary conduction.

(2) The Case of Vanishing Viscosity (v = 0).

9. Before concluding our discussion of equation (3), we have to make one last remark.
If the fluid were completely inviscid (v = 0), the second term in (1) would disappear,
and on multiplying (1) by ¢ and integrating throughout the fluid field we should obtain

ewdy =0 ... ... D (17)

—an equation which could also have been obtained by putting v zero in (3).

The interpretation of (17) is that, when the fluid is inviscid, our steady motion
possesses neutral stability, in the sense that a disturbance can neither disappear nor
indefinitely increase. This conclusion was to be expected on physical grounds, since in
the absence of viscosity there is no mechanism whereby the rotation of any fluid element
can be changed™®; no complication arises from boundary conduction, since this again
can operate only in virtue of viscosity. To describe the stability as neutral seems
appropriate, although the consideration that all the vorticity might (so far as equation
(17) is concerned) subsequently be concentrated in a finite portion of the field, and so
attain great local intensity, illustrates the difficulty (remarked by RAYLEIGHT of
framing an accurate definition of what we mean by stability.

RAVLEIGH'S Rescarches on the Stability of 1 nviscid Fluids.

10. Equation (17), which we have just shown to be valid for inviscid fluids, has an
important bearing on numerous researches in which RAYLEIGH sought to avoid the
difficulties associated with the viscosity term in (1) by assuming viscosity to be opera-
tive in determining the type of the steady motion, but without effect on the subsequent
history of an arbitrary disturbance. In other words, RayLeicH simplified (1) by omitting
the term vV2¢, and then sought a solution on the assumption that U is a specified function
of y. A number of functions were tried,—among them the linear function which is the
actual form of U in the problem of this paper. RAYLEIGH’S conclusion was that the
steady motion is stable or unstable (for a fluid of vanishing viscosity) according as U,
regarded as a function of y, has a curvature which is or is not of one sign throughout the
breadth of the field. In the nature of the case, no question of a critical speed (or value
of REYNOLDS’ number) arises.

* Hquation (1) with the term in v suppressed may in fact be regarded as expressing the constancy of
for a particular element of the fluid.
T ¢ Collected Papers,” vol. 6, p. 202 (1913).
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11. A linear distribution of U may be regarded (since the ““ curvature ” of U is every-
where zero) as a limiting case in which RAYLEIGH’S criterion leads to the conclusion
of neutral stability ; and in this sense his result supports the conclusion which we have
drawn from (17). But it may be questioned whether investigations on the lines pro-
posed by RAYLEIGH can be expected to lead to results of any significance. Whatever
be the form of U (as a function of y), equation (17) can be obtained ; and if this equation
is admitted, neutral stability may be inferred for any laminar steady motion, since equation
(17) shows that the average value of {2 is invariant in respect of time.

It thus becomes necessary to consider the question why, since (17) indicates neutral
stability for all types of steady motion, RavLEioH should have obtained any criterion
of stability from his investigations. The explanation of this paradox would appear
to be as follows :—Equation (17) has been deduced from (1) after suppression: of
the viscosity terms; and equation (1) has been derived by assuming two solutions
of the fundamenta lhydrodynamic equations to exist,—namely, a steady motion
(u="TU=f(y); v=0) and a disturbed motion (v = U -+ «’; v =1'). Subtracting
the two solutions, we have obtained equations which govern the disturbance «', v';
and on account of the form of the original equations these derived equations do not
involve the body forces. But this means, physically, not that the body forces are
assumed to become inoperative when the disturbance becomes “ free,” but that they are
assumed to remain unchanged. Therefore, when we take a definite function of y to
represent the steady motion U and insert this in the equation which governs u’, ¢/,
we are investigating the subsequent history of a disturbance which develops, not under
no body forces, but under that system of body forces which would be required to bring U
wnto existence. |

12. Suppose that the body forces do not form a conservative system. Then a fluid
clement, by following some suitable path, can take up energy from them ; and whilst
energy will not be absorbed in this way so long as the motion is laminar, it may be so
absorbed in a disturbance of suitable type. The condition that body forces confined
to the direction of # (such as are required to establish laminar motion) shall be
““ conservative ” is 9X/dy = 0, or (in the circumstances which are here contemplated)
X = const. Under this eondition the equation for the steady motion is

v U = const.
dy? ’
which shows (since v cannot change sign) that the curvature represented by d2U/dy?
must be of one sign throughout the breadth of the field, if the velocity U has been built
up by a conservative system of body forces. 4

It thus appears that in those types of steady motion considered by RAYLEIGH in
which d?U/dy? changed sign in the field (and for which he deduced instability), he was
tacitly assuming the operation of a non-conservative system of body forces, and

2H2
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investigating the subsequent history of a disturbance developing under the action of that
system. It is therefore not surprising that he should have deduced a possibility of
hydrodynamic instability. '

Secrion II1.—Review of Available Methods : (2) The Method of Expansion in Normal
Co-ordinates.

1. The method of normal co-ordinates is applicable to a large number of physical
problems, but it is restricted to cases in which the governing equation is linear. This
restrictidn, in our problem, confines attention to infinitesimal disturbances: the
governing equation then becomes

2 _ o 4 0%
, T VC—}—Ua 0, « . v v v e (1)
where
oV o _ gy
= =T @)

To explain the method, we may take as before the speéial case in which U = 0, so
that equation (1) becomes

% WV =00 e e (4)
It will be observed that equation (1) reduces to this form, whatever the value of U,
provided that the disturbance is laminar (so that ¢ is independent of ).

At any particular instant in its history, the disturbance may be analysed into a series
of ,component disturbances, each of which is harmonic in z with some particular wave-
length ; and since the governing equation is linear these component disturbances will
behave independently of one another throughout all time. Stability for laminar
disturbances has been proved.t Therefore in discussing either (1) or (4) we may assume
that the disturbance is harmonic in #, and then the first of (3) may be replaced by the
condition that ¢ must vanish at all points on the boundary, so that in place of (3) we
may write ‘ '

b=

D]
€12

= 0, at the boundaries. . . . . . . . . . . (5)

* Equations (1), (2) and (3) are equations (14), (13) and (11), respectively, of Section I.
T See § 5 of Section 1. '
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(A) Application to the special case (U = 0).. ““ Normal ” Solutions.

2. The basic assumption of the method is that any solution of the governing equation
(compatible with the boundary conditions) may be analysed into a series of component
solutions, each of which is a simple exponential function (with real or imaginary index)
in respect of time. These component solutions are termed * normal” solutions, or
co-ordinates ; if we can determine the nature of their variation with time (¢.e., whether
any tend to increase), then, according to the assumption stated, we can decide the
question of stability for the most general type of disturbance that can occur.

The justification of the assumption (which is the basis of LAGRANGE’S general treat-
ment of dynamiéa,l‘ problems) would appear to come from an argument by induction.
If we were dealing with a system characterised by a finite number n of degrees of
freedom, the equations of motion would also number # ; they would correspond with the
equation (4) which governs our continuous system at every point in the field. Examining
the conditions for a solution of ““normal” type, we should find that » (in general)
distinet solutions of this type exist,—that is, exactly the number required to enable us
to represent any possible configuration of the system as a series of normal solutions.
The assumption is therefore justified when % has any finite value however great ; and
it is inferred that a corresponding property may be postulated for systems in which = is
infinite,—that is, for continuous systems such as we are considering here. This argument,
of course, has no pretensions to mathematical rigour. But at least we may say that a
series of n normal solutions can be found Which will represent any specified disturbance
at n points, and that no finite limit is imposed on the magnitude of n. If then all
of these normal disturbances have negative time factors, the question of instability is
relegated to a type of disturbance (namely, the difference between the specified
disturbance and the disturbance actually represented by our series) which on physical
grounds may be regarded as most unlikely to persist. :

8. Making the assumption, we assert that any solution of (4) may be represented by
a series of the form o

¢:A&L+Awg+uﬁ+Awf%m,..‘ ...... (6)

where, for example, ¢, has the form : o
v gy=eW, Lo . (7)

so that ¥, is a solution of the ““ normal equation ”
[AVE— WY, =0 . .. ... N )|

which satisfies the boundary conditions

_ 0¥, _
Fom S0 (9)



http://rsta.royalsocietypublishing.org/

N

a
A
1~
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

YA

=0

'am \
P\

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

234 R. V. SOUTHWELL AND L. CHITTY ON THE PROBLEM OF HYDRODYNAMIC

The values of %, ... A, ... are at present unknown, and are not, @ priori, necessarily
real. If we can show that they are all negative or have their real parts negative, then,
according to (6), any possible solution of (4) must ultimately come to zero. Hence, to
decide the question of stability when U = 0 it will be sufficient to confine attention to
equations (8) and (9). The question, how to determine the coefficients A, ..., etc.
in (6), will still be open ; but this will not matter if we are prepared to assume that the
series exists.

The Comjugate Property.

4. Toinvestigate the nature of 1, ..., etc., we make use of “‘conjugate relations ™
which can be shown to hold between any two normal solutions of equation (8).

Let ¥, be a second normal solution, satisfying the equations which are obtained
‘when m is written for » in (8) and (9). Multiply (8) by ¥, and integrate throughout
the fluid field : then we have

m

A f f ¥, Ve, drdy= v f f T, dedy, ... ... (10)

and in exactly the same way we may obtain the equation
A _U VR, dedy = v H vV, dedy. .. .. ... (11)

But, in virtue of the boundary conditions which are satisfied both by ¥, and ¥, we
have
J jlvmvz ¥, dx dy = j j V2, dedy
and ' e e e e e (12)
H ¥, VW, do dy = j j VA, d dy.

Hence we may deduce from (10) and (11) that
(= ) [[PuV2¥, dody = o,
and it follows from (10) that o

“%ﬁ%@@=ﬁ%ﬂ%ww=mﬁM¢h'~--“m

These are the “conjugate relations ” which hold between “ normal ” solutions.

Reality of the Time Factor in a * Normal > Solution.
5. The relations (13) may be used to show that (in this special case of our problem)
all the »’s are real. For if in (8) A, were complex or imaginary, so that we could

write
A, = o 4 18, where o and B are real,
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then ¥, would also be complex or imaginary, so that we should have
¥, = R4 T,

where R and I are real functions of  and .

It is easy to verify that a second solution ¥, would exist, associated with a constant

M, where
¥, =R—il

and o

N = o — OB,

Hence, writing ¥, for ¥,, in (13), we see that, unless Mo = Ay

j j V.V, do dy = 0.
But
[P0t oty = ([ 9. . v, dady

= ([ (v* Ry + (V1) dody,

and the last integral cannot vanish unless V2R, V21, and therefore (by the boundary
conditions) R and I, vanish everywhere.. We deduce that 2i8 (= 1, — 1,) must be
zero, so that 2, and 2, are purely real.

AUl * Normal > Disturbances come ultimately to zero.

6. Given this result, we can show at once that all the A’s are in fact negative in the
special case now considered. Multiplying (8) by ¥, and integrating, we have

n j j WV, da dy = v ﬂ o dedy, .. . .. (14)
or, by GREEN’S theorem, in virtue of the boundary conditions (9),

—a,,ﬁ{<a§;">2+<%—l§i>2}dxdy = [[repddy. .. ... )

Since both integrals are necessarily positive, this proves the required result.

The Method of Expansion.

7. Thus, on our starting assumption, we have demonstrated stability (in the case
where U = 0, and the disturbance is of infinitesimal magnitude) without following out
the detailed history of any disturbances other than those of ‘ normal” type. To
determine completely the history of a given disturbance, we should in general have
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required to know the value of A, ..., ete. in the expansion (6),—that is, actually to
perform the expansion. It is a great advantage of the method that this procedure is
not necessary ; but on the assumption that the expansion exists, the conjugate relation
does in fact provide us with a method for determining the coefficients.

Initially (when ¢ = 0), we have from (6) and (7)

§=dg =AY, e AT . L. (16)

Multiplying both sides of this equation by V®W¥,, and making use of the conjugate
relations (13), we obtain on integration

” QJOVZE’,L dxvdyiAn J“f,;VZ‘I’ndx'(ly, N 1))

—a relation which serves to determine A, when ¢, is given and the form of ¥, is
known.

Approximate Determination of the Tvme Factor.

8. For some purposes it might have been desirable, not only to prove stability by
showing that all the A’s are negative, but also to determine the numerically smallest
value of A, —that is, the rate of decay of the most persistent normal disturbance.
(Evidently this component will predominate in any disturbance which has been * free *’
for a considerable time.) In other problems stability is replaced by instability, so
that some of the A’s are positive ; it then becomes important to determine the largest
of these positive values, since the corresponding normal disturbance must ultimately
predominate. '

In the example which we are now considering, the A’s can be found without difficulty
by exact methods. But in other systems an exact determination of A, even for the most
persistent disturbance, presents difficulties which are insuperable; and it is another
important advantage of the “ method of normal co-ordinates » that it provides a means
of approximating to the A’s which does not involve an exact functional solutlon of the
governing equation.

9. The procedure, which is due to RayLEIGH, may be explained as follows :—Suppose
that we calculate A from the equation

Lo llemred

gy ( Ck } !

”{<8x) T 83/) cl:my

by giving to ¥ any arbitrarily chosen distribution which does not violate the boundary
conditions. Comparing (18) with (15), we see that (18) would be an exact value for a,
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if our chosen distribution had agreed accurately Wlth ¥, We also see that (18) is
equivalent to
v H YV4Y dx dy
A= s e e e e e e e e (19)
H YV dedy

and if in this equation we substitute for ¥ an expansion of the form (16), we have the
expression

y j jz (A F,) . B (AN, do dy
-

H S (ALF). S (ANV2E) do dy

Now this expression, in virtue of the conjugate relations (13), reduces to the form

5 [Lx,lz [[wvew. o dy} )

[ U N‘I,ldwdy}’
vZ l' 22 Vz‘if ded?_}

x[as]] > ) et |

So (20) gives the value which we shall obtain for » when an arbitrarily chosen ‘¥
is inserted in (18),—A, ..., etc. being the constants in the series of type (16) by which
this arbitrarily chosen ¥ is represented. ~Without seeking to determine A, ...,
etc., we may deduce from (20) that 3f our assumed W is in fact closely identical with a
normal solution ¥, (so that A, is large in comparison with all the other A’s), then A
will be even more closely identical with 2;. For 2 = 2, when all the A’s except A,
are zero; and accordingly A/3, differs from unity by small quantities of the type (A./A; )2
—that is, by a small quantity of the second order.

or to

Physical Analogues of ““ Normal > Solutions of the Simplified Equations.

10. Equations of type (8) and (9) are governing equations in other physical problems
having no connection with Hydrodynamics. We may mention here the problem of
elastic stability in a flat plate of uniform thickness subjected to uniform thrust in its
plane, and the rather more artificial problem of flexural vibrations in a flat plate which
has uniform “rotatory inertia,” compared with which its ordinary (*transverse )
inertia 1s negligible.

VOL. OCXXIX.—A. 21
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(B) Application to the General Case.

11. Turning now to the general case of our problem (where U  0), we have to
consider “ normal > solutions of (1) and (5),—that is, solutions of the form (7). The
normal equation (8) is now replaced by

0
n I"‘“ - 2 2\.:[1"" = Uy v e e e e e e e
[x +u VV]V 0 (21)

which for some value of A, must be satisfied, together with the boundary conditions

by a normal solution of our problem.

Failure of the Conjugate Relations.

12. In seeking to apply to the general case the methods which have been described
above, we are at once confronted with the difficulty that solutions of (21) do not obey
conjugate relations analogous to (13). Proceeding on the lines of § 4, we should obtain,
in place of (10) and (11), two integral equations as follows :—

l,,ﬂ‘lfmvz V.dedy = v J v, Vi, de dy — ﬂU v, %Vz ¥, dx dy,

| (22)
_ _ KA
a, j j YV, du dy = vj WV, do dy ” Uy, 2o, dedy.
The relations (12) still hold ; but we have
» O g2 I - ’
”U‘P’,,axv ¥, drdy = H o vz (UVY,)dzdy,
-_-”a;” {UV2 dUalF}d dy
(since U is linear in y and independent of z),
dU oy,
S — 2 er
j m{U V¥, 42l away}dwd
......... (23)

Hence, on subtraction of the two equations (22) we obtain, using (12),

() H‘P‘ vy, dde—QH‘P'{ aa V2 n+dUa‘F}dxdy
(v,

~2([v { :

)+8(Ua>} Srdwdy; . (24)

oy\ oy
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and since the right-hand side of (24) does not of necessity vanish, we are unable to
deduce relations of the type (13).

“ Energetic” and * Non-Energetic ” Terms.

13. We shall see the reason for this result if we throw (21) into the equivalent form

. dU o2V, 8( 8> 0 < 8>]8‘FM}
n 2‘Fn = 41}7& 5 A A T ~ W A [ .
MV W dy oxdy {[aw Uaoc +8y Uay ox (25)

in which, as before, g can be written for dU/dy. It is on account of the terms in twisted
brackets that we obtain the integral on the right of (24) : had they been absent, so
that we had as the “ normal equation ” -

o |
MVE— Wt — 3 — ¥, =0, . ... .. ...
e e LA (26)
we could have deduced conjugate relations corresponding with (13).

Multiplying (25) by ¥,, and integrating throughout the fluid field, we obtain the
integral equation

i,,ﬂ‘l’,,V“F,,dwdy:v“(vz‘}”,.)zdwdg)—}—BH‘Pﬂg:g;dxdy. @)

But the same equation could have been derived, and by the same process, from (26).
Hence we see that the terms in twisted brackets on the right of (25) make no
contribution to the integral equation, when ¥, is taken as the multiplier.

Equation (27) may be termed the ‘‘ energy integral equation,” since the integral

on the left is a measure of H (u? + v'?) do dy,—the “ kinetic energy of the disturb-

b

ance.” Tt is in effect the equation discussed by OsBorNE REvNoLDs.* Accordingly
we shall speak of the terms in twisted brackets as ““ convectional ’ or ““ non-energetic ’»
(they do not affect the momentary rate of increase of the  kinetic energy ”’); the
remaining terms in (25),—viz., the terms which appear in (26),—we shall describe as
“ energetic.”

Non-energetic terms do not appear in the governing equations of ordinary problems
in vibration theory. We shall show that their occurrence in our problem is the reason
why the method of normal co-ordinates cannot be applied, at all events in its usual
form.

Consequences of the Non-Energetic Terms.

14. The ““ non-énergetic ’ terms, as we have seen, result in failure of the conjugate
relations between normal solutions. If we turn back to §§ 5-9, we see that without

* Equation (23) of Section I.
212
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the aid of these relations we could not have established that the A’s were necessarily
real, or that their real parts were negative ; neither could we have justified RAYLEIGH'S
approximate method for their calculation. These questions are accordingly still open
in relation to the general case of our problem.

Had the non-energetic terms not been present, OsBorNE REYNOLDS’ investigation
would have had a real bearing on the question of stability ; in fact, it would have
constituted an ordinary application of the method of normal co-ordinates (cf. § 6).
Actually (since the ¥ which he inserts in (27) has an arbitrarily chosen distribution)
it must be regarded as an application of RAYLEIGH’S method (§9) in circumstances
where this method cannot be justified as a method of approximate calculation, because
the conjugate relations do not hold.

Similar objections apply to any extension of REYNoLDS’ method on the lines described
in Section I, § 12, «+f 1ts results are regarded as an answer to the question of stability.
For the values of “ 2 ”” (denoted by -—¢ in Section I) are there deduced from distribu-
tions of ¥ which do not satisfy the correct normal equation’ (25), but the modified
equation (26).

- Résume.

15. Summarising the conclusions of this section, we may say that the method of
expansion in normal co-ordinates cannot be applied, at all events in its usual form,
to the general case of our problem. The reason is that our normal equation, which
may be written in the form (25), contains  non-energetic ”’ terms which cause a break-
down of the conjugate relations. We defer for the present any consideration of the
question whether the method can be modified to meet our requirements: what we
have first to discuss is the question whether, because the conjugate relations fail, there
is any necessity to discard the assumption that an arbitrary disturbance may be
expanded in a series of normal solutions, satisfying equations of the type (25) and
the boundary conditions (9).

Is the Expansion wn Normal Co-ordinates Valid in the General Case ?

16. A remark by RAvYLEIGH* suggests that he had some doubt as to the validity of
the expansion : “ From his (KELVIN’S) results it appears that it is not possible to find a
solution applicable to an unlimited fluid which shall be periodic with respect to z, and
remain finite when y = 4+, ... The cause of the failure would appear to lie in
the fact, indicated by Lord KELVIN’s solution, that the stability is ultimately of a higher
order than can be expressed by any simple exponential function of the time.”

Orr{ also considered this question in relation to our problem. He set himself to
establish, (1) that the ‘frequency ” equation (from which the A’s are to be found)

* ¢ Collected Papers,” vol. 4, p. 209 (1895).
T ¢ Proc. R. Irish Acad.,” vol. 27, pp. 9-138 (1907),
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has an infinite number of roots, and (2) that the expansion, if valid, can be effected.
It thus appears that he considered these to be necessary conditions for the validity of
the expansion. He describes his investigation as * very incomplete and unsatisfac-
tory,”* and found himself unable to perform the expansion.

In regard to RavyLEicH’S remark it may be contended that solutions applicable to
an infinite field (e.g., in the theory of elasticity or of the conduction of heat) have very
little bearing on the question of expansion in normal co-ordinates when the field is
limited and boundary conditions are imposed. In regard to the standpoint adopted
by ORR it may be remarked that we have succeeded in finding a method of expansion,t
but that this result does not seem to have much bearing on the question whether the
expansion is in fact valid. In ordinary harmonic analysis, for example, there is no
difficulty in determining values for the coefficients, but a relatively elaborate argument
has to be employed to justify the expansion. In many physical problems for which the
method of normal co-ordinates is employed, the validity of the expansion cannot be
established rigorously, but is assumed,—presumably on the grounds of an argument
by induction, of the kind which has been given in § 2. Now since this argument does
not involve the conjugate relations, its conclusion is not invalidated merely because the
conjugate relations do not hold. It seems reasonable to assume that the expansion is
valid, at least to the extent that an arbitrary disturbance can be defined with
sufficient accuracy by giving values to ¢ at n points in the field, where » may be very
large, but is finite.

17. Tt is almost certainly necessary to adopt this standpoint if we are to make any
progress with our present problem, because we have seen (Sections I and II) that nothing
definite seems to be obtainable by the use of integral equations. That is to say, we
seem obliged to conclude that the steady motion is stable (in the sense that every
infinitesimal disturbance comes ultimately to zero) if we can show that this equation
has no solution for which the real part of A is positive.

This is the standpoint adopted by most workers on our problem. RaYLEIGH] asserts
that “a precise formulation of the problem for free infinitesimal disturbances was
made by ORR (1907),”—and Orr’s formulation was based on the * normal equation.”
His period-equation was given a little later (1908) independently by SoMMERFELD,§
whose paper stimulated the investigations of v. Mises|| and Horr.§ The latter do not
appear to have been accepted by RavLEIGH, although he agrees with their view that
the motion is stable.**

* Ibid., p. 4.

+ This will be described in a subsequent paper.

1 ¢ Collected Papers,” vol. 6, p. 274 (1914).

§ ¢ Atti Cong. Intern. Math.” (Roma, 1909), vol. 3, p. 116.
|| ¢ Jber. deuts. Math. Ver.,” vol. 21, p. 241 (1912).

4 ¢ Ann. Physik,” vol. 44, p. 1 (1914).

** See Introduction, § 7.
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18. In our own preliminary attack on the problem we decided that it would be prefer-
able, instead of proceeding from the formal solution in terms of Bessel functions and
substituting for these their semi-convergent approximations, to solve equation (21) by
the laborious method of calculating series and combining them to satisfy the boundary
conditions. Although this procedure was:only expected to throw light on a limited
range of REYNOLDS’ number, it offered the advantage that the limits of error would
be definitely known. Further, the same method would be applicable to other
problems of hydrodynamic stability, in which the normal solutions cannot be expressed
in terms of known functions.

This investigation is described in Section IV.

SectioN IV.—Application of the Method of Normal Co-ordinates (Numerical
Calculations).
Non-Dimensional Form of the Governing Equation for ““ Normal ” Disturbances.

(13

1. For purposes of numerical calculation, the equation which governs a “‘ normal ”’
disturbance must be transformed so that the parameters of the problem, and the
independent variable, appear in non-dimensional form.

This equation is obtained from (1) of Section III by assuming that ¢ is harmonic in
2 and a simple exponential function of the time. Separating real and imaginary parts
of the time factor, we may write

b= et Himiti (1)

where %, p and ¢ are constants, and ¥ is a function of y only.
Now let 2b be the breadth (d) of the fluid field, and write

~

z for ky,
v for kb,
P for p/vk* = pb*/vwy®, ». . . ... ... (2)
Q for q/vk* = qb*/vy?,

B for p/vk* = 8b%/vy*. ]

Then thé wave-length ! of the disturbance, in the z-direction, is given by
| I — 2rby,
and ReEyNoLDs’ number for our problem is defined by
R =Vd/v= (28b) X (2b)/v = 4¢*B.

When modified by these substitutions, the governing equatlon (if the origin is so
chosen that U = By) takes the form

[Q+V:E—i(PL+B)]VE¥ =0, . ........ 3
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where V2 now stands for the operator [d?/dz? — 1], and ¥ is a function of z which, by (5)
of Section III, must satisfy the boundary conditions

If we write ) ‘
T (5)

where ¥, and ¥, are real functions of z, a real form of solution corresponding to (1)
18

¢ = e {¥;sin (kz + pt) -{— W' cos (ke + pt)y. . . . . .. (6)

Substituting from (5) in (3), we see that ¥'; and ‘¥ are subject to the relations

[Q + V2] V2, 4 (P 4 Bz) V2, = 0,
[Q + V2] Vv, — (P + Bz) ¥, = O,}

and, by (4), to the boundary conditions

A¥y _ o _ d¥,

Ta=m == =0

These are the required equations.

Solution vn the Special Case U = 0.

2. It is easy to show, from (7), that P must be zero when U (and hence B)= 0.
Multiplying the first and second of (7) by ¥; and ¥y respectively, subtracting and
integrating over the whole breadth of the fluid field, we obtam, in virtue of the
boundary conditions, the relation

j{qf'Rz WYL YA =0, . . ... ... ®)

where dashes denote differentiations with respect to z. = Since the integrand in (8) is
composed of squares of real quantities, both ¥ and ¥; must vanish at all pomts in
the field, unless P = 0.

3. It follows from (7) that, in the special case now considered, ¥, and ¥; are
independent solutions of the equation

Q+ VIV =0 . ........... (9)

which satisfy the stated boundary conditions. If we take the origin at the centre of
the field, so that the boundaries are represented by
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it is evident that solutions of (9) may be either purely odd or purely eveninz. Further,
if we write

=Q—1, . . . . ... ..., . (11)
the even solution takes the form ‘
Y =Acoshz+ Becosaz, . . . . . . . ... (12)
where
cobay _ cothy (13)
| - A .
and
Acoshy +Beosay =0, . . . . . .. ... (14)
and the odd solution takes the form
¥ = (Csinhz4+Dsinaz, . . . . . . ... .. (15)
where
tan ay _ tanhy (16)
oy Y
and
Csinhy +Dsinay =0. . . . . . .. .. ..

Solutions of (13) and (16), regarded as equations inay, are easily obtained by “ trial
and error ” when vy is assumed. The roots of (13) are separated by roots of (16), the
lowest value of ay coming from equation (13). As y increases (i.e., as the wave-length
of the disturbance becomes less in relation to the breadth of the fluid field), all the roots
steadily decrease. The variation of the graver roots is indicated in fig. 4.

Solution when U ts Finite. Limatations on the Magnitude of P.
‘4. When U (and therefore B) is finite, it is no longer possible to assert that P must
be zero. In place of equation (8), we now obtain from (7) the condition

j (P Bo) (/2 4+ W2+ W b WA de =0, . . . ... (18)

where dashes denote, as before, differentiations with respect to z. The conclusion to
be drawn from this modified result is that (P - Bz)—that is, (p + kRy)—must change
sign within the fluid field : this has been remarked by Orr.*

The ratio —p/k can be seen, from (6), to be the velocity with which the disturbance
is propagated along the fluid in the direction of the z-axis; and since the origin has
been so chosen that the velocity U of the steady stream is given by

U = By,
our restriction on the value of p may be interpreted as requiring that this velocity of

* Loc. cit., p. 99.
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propagation shall be equal to the velocity of the steady stream at some point within the breadth
of the fluid field.
A Simplifying Assumption.

5. The investigation of § 2 showed that P is zero,—i.e., that the time factor of the
disturbance is purely real,—when the boundaries are at rest. If we take the origin at the
centre of the field (so that the steady shearing motion involves equal and opposite

25 - ;
] 4% Solution.
\"h\

r-\

Asymptoce For 4% soltn

20—

3 Solution.

Asymptote For 3 sol

o

Asymptote for 2n9sol®

\ 1% Solution
~_]

05 | Asymptote for ¥ 502
0 i 2 3 7
5 @ 5 3

Fig. 4.—Curve relating ay with y where (¢? 1) y? = Qy? = ¢b?/v.

velocities at the two boundaries), it is thus reasonable to expect that the normal
disturbances will be characterised by a purely real time factor over part at least of the
range (0 < B < ®). The numerical calculations were started on this assumption ;
that is to say, the boundaries were taken to be given by

e= b=y, .. ........ (10)bis

and it was assumed that P = 0. This assumption underlies all the results which follow.
VOL. COXXIX.—A. 2K
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Nature of the Normal Disturbances when P = 0.

6. On this assumption, equations (7) become

[Q + V2] V2 W, + BeV2 W, = 0,
[Q + V3] V¥, — ByV2 ¥, = 0,

..... C L 9)

where V2, as before, denotes the operator [d?/dz? — 1]. The boundary conditions are
Y= W=V, =¥, =0, when z=+7y. .. .... (20)

The form of these equations, considered in conjunction with (10), indicates that we
may assume the normal disturbance to be of a type in which ¥y is an even function and
¥, an odd function of z. TFor the even part of ¥y, together with the odd part of ¥y,
constitute a solution in no way dependent on that which is constituted by the odd part
of ¥ and the even part of ¥;; and further, the second of these two solutions, taken
separately, can be seen from (6) to represent a disturbance which differs from the first
solution only in respect of its phase regarded as a function of .

Dervation of the ** Characteristic Equation.”

7. Accordingly we assume for ¥, and ¥, the infinite power series represented by

. zZn
‘FR == Z [Cﬂzn '2—;1/—-']’ w

z2n+1
Yr=x [” m—u]

Substituting these expressions in (19), we obtain the relations
Upys = — (Q — 2) g4 + (Q — 1) @, — 2B (byy — bay_1), } 22)
b2n+5 = - (Q - 2) b2n+3 + (Q - 1) b2n+1 _l" (2”’ + 1) B (a2n+2 - aZn),

when % > 0. From these the coefficients @,,, bs,.; can be determined when a,, b,
a4, by have specified values. Thus we can obtain four independent solutions of (19),

each of arbitrary magnitude. |
We denote these four solutions by ¥, ¥, ¥; ¥,, and derive them from the

following assumptions :—

for ¥, : a, =1, a2:61=b3=0,)
for ¥, ap = a5 =1, b, =" = ’0,

2 0 2 1 3 } (23)
fOI"Fazbl:—'l, a0=a2=b3=0,] ’
for ¥'y: b, = b =1, ty = @y = 0. _
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The most general solution may now be written in the form
¥ — AW, +BY, +C¥, +D¥,, .. ... ... (29)

where A, B, C, D are arbitrary constants; and the boundary conditions yield four
relations between A, B, C, D, since the real and imaginary parts of (24) must satisfy
these conditions separately. If we denote, e.g., the real part of ¥, by ,'¥; and the
imaginary part of ¥; by ;¥;, and eliminate A, B, C, D from these four relations, we
obtain the ‘ characteristic equation ”

1WR’ Q\P’R? 3\FR’ 41P'R
I\FIR’ 2\F,R’ 3IFIR’ 4\Y,R
llFI » Q\FI b 3‘1}'1 > 4‘FI
l?’.,b 21F’I? 3‘{}.,1’ 4‘11”1

=0, whenz=1y. (25)

Now it can be seen from (22) and (23) that
¥, = coshz,
\P“l» == Sinh Z. J .

Accordingly, equation (25) may be simplified in form ; it becomes
Wp — W, tanh 2z, ¥, — P tanhz

, , =0, whenz=1~y. (27)
W, — ¥ tanh 2z, ¥, — ¥/ tanhz

— A = cosh? z

Solution of the Characteristic Equation.

8. Equation (27) has been solved by a process of trial and error. A definite value of
v is assumed. Next, for some selected value of B, the coefficients in the series for ¥,
and ¥, are calculated by means of the relations (22), and the determinant in (27) is
evaluated for a series of values of Q.* Then, on plotting a curve to show the variation
of A with Q (e.g., fig. 5), we find that A oscillates about the zero line, so that ** critical »
values of Q can be determined for which A vanishes. Three of these critical values
are given by fig. 5, which has been drawn for B =1, y = 2.7

Repeating this procedure for other selected values of B, we obtain material for the
construction of a curve relating (for the assumed value of v) B with the critical values

* In some instances it is convenient to work with a single selected value of Q and a series of values of B;
but the procedure is the same. ‘
+ A preliminary estimate of the values of Q for which A will vanish can be formed, for small values of B,
from inspection of fig. 4. :
2K 2
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Fra. 5.—Curve relating Q with A, fory =2, B = 1.

of Q. TFig. 6 illustrates this relation (in the case of the four lowest critical values of Q)
when y == 2: results for other values of y will be given later.

] [ T

\\ " %

o

@ O

r g
N
N

W

{
|
!

(S A LR
s (s

4
-N‘}:
|

R

)

B
0-9 -§ 7 6 5-4 -3-2 -1 Ot 2 3 4 5°% 7 8 9 0
Fia. 6.—Relation between Q and B fory = 2.

Discussion of Resulls.

9. The outstanding feature of the Q — B relation, as exemplified by fig. 6, is the looped
form of the curves. This has no counterpart in any ordinary problem of vibrations
that has come within our notice, but it can be reproduced in simple systems of an artificial
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nature. The continuous transition between points A and B on the lower loop of fig. 6,
by way of the points C, D, E, F, would seem to imply a continuous transition in the
type of the normal disturbance. 'The type corresponding with A is that defined by
equations (12) to (14) of § 3, in which ¥ has the same sign in both halves of the field :
the type corresponding with point B is that defined by equations (15) to (17), in which
¥ changes sign at the centre of the field.

When these results were first obtained, it seemed difficult to imagine any process
of continuous transition from the first type of disturbance to the second, and attention
was accordingly focussed on the nature of the normal disturbances implied by our
solutions. We pass now to a description of the processes by which these disturbances
were investigated.

Nature of the Normal Disturbances. Determination of Contours.

10. Equation (25) is derived from the boundary conditions (20) by elimination of the
arbitrary constants A, B, C, D,—i.e., of the three ratios B/A, C/A, D/A. Any three of
the boundary conditions will serve to determine these three ratios, and the fact that (25)
has been satisfied implies that the fourth boundary condition will be consistent with the
values so found. Thus it was a straightforward (although lengthy) matter to determine
the ratios appropriate to any point in the curves of fig. 6, and thence to determine the
appropriate forms of ¥y and ¥y

It was then possible to calculate the form of any contour of constant ¢ according
to equation (6). When ¢ = 0, this expression for ¢ may be thrown into the form

$ = V¥ + Vesin {y (z/b) 4 tan-? (¥y/¥3)},

and hence, knowing ¥y and ¥; for any value z ( =y y/b), and given the value of ¢
for the contour which is to be plotted, we can find the values of v z/b for the points at
which this contour cuts the hne 2=+ z

Figs. 7 to 17 show the results of calculations conducted on the foregoing lines in
relation to the lettered points of fig. 6. These contour diagrams clear up completely
the difficulty mentioned in §9 as associated with the idea of continuous transition
from modes in which ¥' is an even function to modes in which ¥ is an odd function of 2 ;
and the diagrams included in the lower parts of the figures, which give the distribution
of ¥ and ¥y across the section, show how the relative magnitudes of the even and odd
functions vary as we pass round the loops of fig. 6. In the first loop, starting at A with
a one-signed even function (fig. 7), we find that, on the imposition of a gradually
increasing B, an odd component having a single sign in each half of the field is introduced
(fig- 8). This component gradually increases in relative magnitude, whilst the even
component gradually diminishes; and after a point D (fig. 6) has been passed, the
same process continues with decreasing B, until at the point B (B = 0, fig. 12) the
function has become purely odd, and of one sign in each half of the field.

2K 3
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The same process is observable in the second loop of fig. 6, with slightly greater com-
plication. Starting at the point G (B == 0, fig. 13) with an even function which changes
sign on either side of the centre line, we find that as B increases an odd component
—having a single sign in either half of the field—is introduced (fig. 14). This component
increases in relative magnitude, and gradually changes into an odd function which has
both signs in each half of the field (fig. 15). After the point K has been passed, the same
process is maintained with diminishing B (fig. 16), until at the point H (B = 0, fig. 17) -
the whole function is purely odd, with both signs in each half of the field.

Addational Results.

11. Calculations on the lines described in §§ 7 and 8 have also been made to determine
the forms of the “ Q — B loops ”” for y = 1 and for vy = 3. The results, with those for
Y = 2, have been plotted in fig. 1 on a slightly different basis, Qy* (or qd?/4v) being
related with 4By? (or £d?/v), which is REYNoOLDS’ number for our problem (§ 1).

General Remarks on Method.

12. In practice it was found that successive terms in the a and b series of (21) were of
alternate sign, diminishing (after a time) in magnitude. A fair approximation to the
value of A could be obtained by retaining coefficients in (21), for the first loop as far as
n = 12, and for the second loop as far as n — 16. The coefficients are required (in
some cases) correct to seven figures; expressions for ¥, etc., can then be obtained
correctly to five figures, and the resulting estimate of A is correct to two or three
figures.* As Q increases for a given B (or as B increases for a given Q), the coefficients
increase in magnitude, and it becomes necessary to take more terms into account in
order to obtain the same degree of accuracy in evaluating ¥, etc. Since A is
found to oscillate with diminishing amplitude as Q increases, a higher degree of
accuracy is required in determining ‘¥ etc., in order to obtain satisfactory approxima-
tion in A. ; :

For this reason the method becomes impracticable when Q and B are large, and the
range of our exploration is accordingly very limited. In fact, as fig. 1 makes clear, our
curves are confined in the main within a range of REYNoLDS’ number which is less than
Orr’s figure (177) for the lowest value at which instability can possibly occur. Thus
we could have foretold.that  would be positive throughout the greater part of our
diagrams, and the actual determination of the loops has accordingly thrown little new
light on the question of stability or instability. '

It is clear that, when R has values such that instability can be contemplated, we must
discard the assumption made throughout this investigation,—that P is zero when the

* These details relate to the calculations made fory = 2.
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origin is at the centre of the stream. Now if P is finite but unknown, we have an
additional parameter to be varied in deriving solutions by our process of trial and error.
It will be appreciated that this additional complication would increase the labour of
calculation to an intolerable extent, having regard to the fact that, as just stated, we
are already near the practical limits of our method. It is thus essential, if further
progress is to be made, to develop alternative lines of attack. A subsequent paper
will describe our attempts in this direction.
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